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ABSTRACT

This paper addresses a specific reactive-flow configuration, namely, the interaction of a detonation

wave with convected homogeneous isotropic weak turbulence (which can be constructed by a

Fourier synthesis of small-amplitude shear waves). The effect of chemical heat release on the rms

fluctuations downstream of the detonation is presented as a function of Mach number. In addition,

for the particular case of the von Karman spectrum, the one-dimensional power spectra of these

flow quantities is given.
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1. INTRODUCTION. Shock-turbulence interaction is an ubiquitous phenomenon present practi-

cally in all high-speed flows of technological importance. It has attracted much attention recently

owing to the renewed interest in aerospace planes that will cruise at hypersonic speeds. The pro-

pulsion devices of these vehicles will be either the SCRAMJET Engine or even possibly the

Oblique Detonation Wave Engine (ODWE), although it must be mentioned at once that the latter

device is still a research concept. In the SCRAMJET Engine, the hypersonic free stream is

compressed and retarded by the inlet to supersonic Mach numbers ranging from 2 to 6 and allowed

to mix with hydrogen in the combustor. The mixing rate at these Mach numbers is known to be

greatly reduced owing to as yet little known mechanisms ascribed to compressibility. To enhance

the mixing process, appropriately generated shock wave interactions have been proposed (Kumar,

Bushnell and Hussainil). In the Oblique Detonation Wave Engine, the stability of the shock-

induced detonation wave in the presence of turbulence is still an open question.

Relevant theoretical studies mostly deal with the interaction of a shock wave with a distur-

bance which is a vorticity wave, an entropy wave or a sound wave (see Ribner2 and Zang, Hus-

saini and Bushnell 3 and references cited therein). Such studies explain the fundamental mechanisms

at play in shock-turbulence interactions. The numerical simulation of the interaction of an entropy

spot with a shock wave (Hussaini, Collier and Bushnell 4) show that such interactions could be a

potent source of turbulence production or enhancement, especially in reacting flows. The first study

of shock-vorticity wave interaction in reactive flows appears to be that of Jackson, Kapila and Hus-

saini5. They show that exothermicity amplifies the resultant triad of vorticity, entropy and acoustic

waves, significantly more so near the critical angle of incidence. These results which are based on

linear theory are verified by the numerical solutions of the Euler equations obtained by Lasseigne,

Jackson and Hussaini 6. The numerical simulations, apart from enabling some limits to be placed

on the validity of the linear theory, throw some light on the transient response, and provide results

of purely nonlinear nature.
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The present investigation extends the earlier study to include a broad spectrum of waves.

Specifically, a convected field of isotropic turbulence is allowed to interact with a detonation wave.

Following Ribner2'7, the turbulence is further assumed to be solenoidal. This is probably justified

in the light of Morkovin's hypothesis (Bradshaw 8; Hussaini, Erlebacher and Sarkar9) that the struc-

ture of turbulence (except for jets) for free stream Mach number less than five is similar to the

corresponding constant-density flow. In the next section we formulate the problem while in the

following two sections we give selected results. Finally, conclusions are given in Section 5.

2. FORMULATION. Consider a three-dimensional field of small disturbances (representative of

turbulence in some sense) in an otherwise uniform stream ahead of a reacting shock (detonation).

Let this pattern be convected through the detonation at some instant of time. The goal is to deter-

mine the nature of the downstream turbulence as a function of the normal upstream Mach number

and chemical heat release.

In this paper the turbulence length scale 1T is assumed to be much larger than the thickness

of the detonation, so that the detonation can be treated as a discontinuity in an otherwise inert flow.

Of course, the detonation is not discontinuity actually but in general consists of a lead shock, an

induction zone and an explosion zone. If the thickness of these combined zones ID is such that

1D /I1 < < 1, then the details of the reaction scheme are not important, only the overall heat release.

This is a restrictive assumption since induction zones can be quite large, but then the present

results may not hold under these conditions. The generalized Rankine-Hugoniot relations across

this discontinuity provide the proper conditions (see, e.g., Williams°). A result of this analysis is

that there exists a minimum value Mcj (called the Chapman-Jouguet Mach number) of the normal

Mach number M ahead of the shock for which a steady detonation wave can possibly be sustained.

The Chapman-Jouguet Mach number is given by
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M J +(1+ )a+ 4(1 +(1 +Y)a)2 I I , (1)

where y is the ratio of specific heats (taken here to be 1.4 for all calculations) and a is the heat

release parameter which characterizes the strength of the reaction.

A snapshot of a turbulent velocity field may be represented as a three dimensional Fourier

integral or spectrum of plane waves with normal along the (generally oblique) wave vector K. We

specify weak turbulence, so that it may be taken as incompressible, even though convected by

supersonic flow. The constraint of incompressibility on the fluctuating quantities then dictates that

the waves are transverse (Batcheloril; Ribner' 2); they are sinusoidal "shear waves".

A single spectral shear wave encountering the shock/detonation wave, seen edge-on, appears

as in Figure 3 of Ribner2 (it may have a velocity component normal to the page). On the down-

stream side appears a refracted shear wave, a superposed entropy wave, and a pressure (sound)

wave. These are related to the upstream shear wave by transfer functions i, T, and P, respec-

tively. More specifically, if the amplitude of the u velocity component (normal to the shock) of the

upstream shear wave is taken as unity, the corresponding component u' of the refracted shear wave

is ff, the temperature amplitude in the entropy wave is T, and the pressure amplitude in the sound

wave is P. These transfer functions depend on the wave inclination angle 0 and the upstream nor-

mal Mach number M. They are derived by a linearized analysis in Jackson, Kapila and H',ssaini5,

and reduce to those of Ribner' 2 for the special case of zero heat release; i.e., a = 0 (ordinary shock

wave).

These single spectral wave relations dictate corresponding relations between upstream and

downstream power spectra. These are implicit in the following integrals of power spectra connect-

ing mean square values of velocity, temperature, and sound pressure perturbations (Ribner 2 7),

= JJJ [u u I d3K (2a)
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u= Iff I 12 [u u] d3K (2b)

~f~f 12 [u u]d 3K (2c)

P = ff I PI 2 [u u I d3K (2d)

where d3K = dK IdK2 dK3, [u u I is the symbol for the spectral density of -u- 2 in wavenumber

space K, and the limits of integration are over the entire wavenumber space. For further details the

cited references may be consulted.

3. ROOT-MEAN-SQUARE COMPONENTS. For the special case of isotropic homogeneous

turbulence, the longitudinal spectral density [u u ] has the general form (Batchelor1 1)

[u u] = K-2 G(K) cos 2e (3)

where G (K) is an arbitrary function of K. Since the turbulence is assumed isotropic, and hence has

spherical symmetry, it is convenient to introduce spherical polar coordinates

K1 = -K sinO, K 2 = K cosO coso, K 3 = K cosO sino, (4a)

d 3K K 2 cosO dK do dO. (4b)

The mean square components of the previous section can now be written as

2n

u, =2 G(K)dK d0 cos 3OdO (5a)

2n

u =2G(K)dK idoIXl2cos3OdO (5b)

2n it i

t =2 G(K)dK Ido I T 2cos3OdO (5C)

27t xt

p 2 1 G(K)dK do p I 2cOs3 OdO. (5d)
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The actual form of G (K) is not needed when determining the rms components, since it will cancel

out when forming ratios. The rms components, in percent of freestream velocity, are now defined

by (Ribner7)

lateral velocity: % [ /U I /

longitudinal velocity: % u U7i ] /

112
temperature: % r t U-

pressure: % Ir p4~~2 U1/

where % means the percent of the preshock longitudinal component of turbulence to the mean

velocity of the free stream, and r = M / Mcj. Note that the rms components are independent of the

preshock spectra, so long as it is consistent with isotropy.

Figure 1 gives the variation of the rms components with M IMcj, the ratio of the upstream

Mach number to the Chapman-Jouguet Mach number, for various values of the heat release param-

eter cc. Here the preshock turbulence intensity is 1% of freestream (% = 1), and the rms pressure

fluctuation is measured far downstream of the detonation wave (x = -c). Figure Ia corresponds to

the results of Ribner2 for ax = 0, and is provided as a reference case for o > 0. One can see from

Figures lb,c that as c is increased so do all the rms components, with the greatest changes occur-

ring for I < M /Mct < 2. As M /Mcj - cc, the rms values are independent of cc. Thus, the effect

of heat release is to increase the turbulence levels, with the greatest changes occurring around the

Chapman-Jouguet Mach number. Note that the rms pressure fluctuation becomes unbounded as

M -4 MC; this behaviour will be analyized in a future manuscript.

The noise generated by the detonation-turbulence interaction is measured on the acoustic scale

in decibels, given by



-6-

r 1/2 1
J I I G L (

dB = 201Oglo % rpl - IP, 1 J Pref = 2x 1 0 atm (6)

when the post shock ambient pressure is taken to be I atm. Figure 2 gives the variation of the

noise in decibels with M IMj for a preshock turbulence intensity of 1%. As in Figure 1, the

effect of heat release is to increase the noise to extreme levels, with the greatest changes occurring

around the Chapman-Jouguet Mach number.

4. ONE-DIMENSIONAL POWER SPECTRUM. The axisymmetry of isotropic turbulence

allows us to introduce cylindrical coordinates

K1 = KI, K 2 = K, coso, K 3 = K, sino, (7a)

d 3K =K, dodK, dK,. (7b)

Substituting these into the mean square components of section 2, and noting that a first integration

with respect to do yields a factor 2 t, the mean square components (5) become

P =2 r [uu IK, dK, dK I J4 (K 1)dKI (8a)

000

-T7 = 2tI X 2 [u u K dK dK -f J4,(K,) dK1  (8b)

7e 2x I I 2 [u uK, dK, dK I je(K,) d, (8)

p 2 I I I jpu2[u Kr dK,dK1= f , (K1) dK. (8d)

The one-dimensional spectra 0u 9 Od, (D,,, and lop" are defined in terms of integrals over K,.

These involve the longitudinal power spectral density [u u I and the respective transfer functions;

they are given by
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di(K1) = 2xl FI 2 [U U]Kr dKr, (9a)

where

Fi = 1, X, T, P, i = u, u, e, p", (9b)

respectively.

For the evaluation of the one-dimensional spectra, the longitudinal spectral density [u u] of

the input turbulence must be specified. Here we chose the von Karman spectral model (see

Ribner2), defined as

[u u] = ur 
2 (0

2+K + K 2 ) 17/6 (10)

where

B-
B 55 a = 1.339018nta'

The normalizing constant a is chosen so that of P in (8a) is consistent with the von Karman

model, i.e.,

= 1J K+ Kr dKr dK 1. (11)
f~ (12K + K,2 )1716

In terms of the von Karman spectral model, the one-dimensional spectra are now defined as

B- - (I + KI + K) 17/
6 dKr, i=uu',t',p". (12)

Figures 3 and 4 display the (normalized) one-dimensional power spectra calculated from (12). For

the actual numerical procedure, however, the above equation is re-expressed in a cylindrical coordi-

nate system (Ribner 2) which reduces the infinite integral to a finite one. The normalization for (D.
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and D,,, is u2, the normalization for (De is with respect to the ambient temperature, and the nor-

malization for *t," is with respect to the ambient pressure. Figure 3 corresponds to the results of

Ribner2 for M = 1.25 and cc = 0 (hence, Mj = 1), and is provided as a reference case for when

(x > 0. Figure 4(a-d) displays Di, i = u', t, and p" (just behind the detonation wave and far

downstream), respectively, for various values of the heat release. In particular, Figure 4a shows

that the effect of increasing the heat release on the longitudinal component of post-shock tur-

bulence is minimal as compared to the same effect on the temperature and pressure fluctuations.

Figures 4b and 4d show that increasing x significantly increases the temperature and far down-

stream pressure one-dimensional power spectras, respectively, while decreasing the near down-

stream pressure one-dimensional power spectra (Figure 4c). All cases show the same asymptotic

decay (the Kolmogorov KI -513 law) beyond K 1 = 3.

5. CONCLUSIONS. The interaction of a detonation wave with a convected field of weak isotro-

pic turbulence (which can be constructed by a Fourier synthesis of single, small-amplitude shear

waves) has been presented. The effect of exothermicity is to amplify the rms fluctuations down-

stream of the detonation, with the greatest changes occurring around the Chapman-Jouguet Mach

number. However, the asymptotic values for increasing Mach number are unaffected by heat

release due to combustion. The far downstream noise generated by the interaction increases sub-

stantially with exothermicity, with the greatest changes occurring when the heat release parameter

increasc2, from zero to unity. The minimum value of the noise level occurs for Mach numbers

about 1.5 times the Chapman-Jouguet Mach number, while for Mach numbers less than this the far

downstream noise can reach levels that far exceed those that in still air could permanently damage

the ear. For the particular case of the von Karman spectrum, the one-dimensional power spectra of

these quantities have been given. In all cases, the one-dimensional power spectra display the Kol-

mogorov decay and are unaffected by exothermicity. Finally, we comment here that the theory
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holds only under the assumption of the reaction zone thickness being much smaller than the tur-

bulence length scale. This is a restrictive assumption since induction zones can be quite large, but

then the present results may not hold under these conditions. However, we believe that the true

value of this manuscript is not in the ability to predict downstream turbulence levels for general

kinetics, but rather provide some insight as to the effect of heat release as a function of Mach

numbers greater than the Chapman Jouguet Mach number on the downstream turbulence levels and

noise, while at the same time providing the numerical modeler a test case (in the limit of fast

chemistry) for their code.
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Figure 1. Plot of the rms components versus M /Mc, for a preshock turbulence intensity of 1%.

(a) (x = 0, (b) cc = 1, and (c) (x = 5. The numbers corresponds to: (1) rms temperature, (2) rms

far-downstream pressure, (3) rpis longitudinal, and (4) rms lateral components, respectively.
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Figure 2. Plot of the noise, measured in decibels, versus M IMcj for a preshock turbulence inten-

sity of 1%.
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Figure 3. REFERENCE CASE: Shock-turbulence interaction (a = 0). Plot of the (normalized)

one-dimensional power spectra versus the wavenumber KI for M = 1.25. The numbers

corresponds to the one-dimensional power spectra of the: (1) longitudinal component of pre-shock

turbulence, (2) longitudinal component of post-shock turbulence, (3) 106 x temperature fluctuation,

(4) 103 x pressure fluctuation just downstream of the shock, and (5) 1W x pressure fluctuation far

downstream of the shock. (Recovery of Figure 6 of Ribner (1987)).
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Figure 4A. Plot of (a) the (normalized) longitudinal component of post-shock turbulence, and (b)

the (normalized) temperature fluctuations, for M IMcj = 1.25 and various values of (x governing

strength of detonation wave. For appropriate scalings see Figure 3.
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Figure 4B. Plot of (c) the (normalized) pressure fluctuations just behind the shock, and (d) the

(normalized) pressure fluctuations far downstream of the shock, for M /M~j = 1.25 and various

values of cc governing strength of detonation wave. For appropriate scalings see Figure 3.
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